arrow

From NeuroLex

Jump to: navigation, search



Cyclothiazide

Name: Cyclothiazide
Description: As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. Pharmacology: Like other thiazides, cyclothiazide promotes water loss from the body (diuretics). It inhibits Na+/Cl- reabsorption from the distal convoluted tubules in the kidneys. Thiazides also cause loss of potassium and an increase in serum uric acid. Thiazides are often used to treat hypertension, but their hypotensive effects are not necessarily due to their diuretic activity. Thiazides have been shown to prevent hypertension-related morbidity and mortality although the mechanism is not fully understood. Thiazides cause vasodilation by activating calcium-activated potassium channels (large conductance) in vascular smooth muscles and inhibiting various carbonic anhydrases in vascular tissue. Cyclothiazide affects the distal renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosages, all thiazides are approximately equal in their diuretic efficacy. Cyclothiazide increases excretion of sodium and chloride in approximately equivalent amounts. Natriuresis may be accompanied by some loss of potassium and bicarbonate. Mechanism of action: As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Drug type: Approved. Small Molecule. Drug category: Antihypertensive Agents. Diuretics
Synonym(s): Ciclotiazida (INN-Spanish), Ciclotiazide (DCIT), Cyclothiazidum (INN-Latin), Anhydron, Aquirel, Doburil, Fluidil, Renazide, Valmiran
Has role: Drug
Super-category: Molecular entity
URL: http://www.drugbank.ca/drugs/DB00606
*Id: DB00606
Related to: Sodium/potassium-transporting ATPase gamma chain, Carbonic anhydrase 1, Carbonic anhydrase 2, Carbonic anhydrase 4, Calcium-activated potassium channel subunit alpha 1, Glutamate receptor 2
Link to OWL / RDF: Download this content as OWL/RDF


Contributors

Ccdbuser, Nifbot2



bookmark

*Note: Neurolex imports many terms and their ids from existing community ontologies, e.g., the Gene Ontology. Neurolex, however, is a dynamic site and any content beyond the identifier should not be presumed to reflect the content or views of the source ontology. Users should consult with the authoritative source for each ontology for current information.

Facts about CyclothiazideRDF feed
Commenttaken from DrugBank
CuratorAb  +
DefiningCitationhttp://www.drugbank.ca/drugs/DB00606  +
DefinitionAs a diuretic, cyclothiazide inhibits acti As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. Pharmacology: Like other thiazides, cyclothiazide promotes water loss from the body (diuretics). It inhibits Na+/Cl- reabsorption from the distal convoluted tubules in the kidneys. Thiazides also cause loss of potassium and an increase in serum uric acid. Thiazides are often used to treat hypertension, but their hypotensive effects are not necessarily due to their diuretic activity. Thiazides have been shown to prevent hypertension-related morbidity and mortality although the mechanism is not fully understood. Thiazides cause vasodilation by activating calcium-activated potassium channels (large conductance) in vascular smooth muscles and inhibiting various carbonic anhydrases in vascular tissue. Cyclothiazide affects the distal renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosages, all thiazides are approximately equal in their diuretic efficacy. Cyclothiazide increases excretion of sodium and chloride in approximately equivalent amounts. Natriuresis may be accompanied by some loss of potassium and bicarbonate. Mechanism of action: As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Drug type: Approved. Small Molecule. Drug category: Antihypertensive Agents. Diuretics tegory: Antihypertensive Agents. Diuretics
Has roleDrug  +
IdDB00606  +
LabelCyclothiazide  +
ModifiedDate14 April 2014  +
RelatedToSodium/potassium-transporting ATPase gamma chain  +, Carbonic anhydrase 1  +, Carbonic anhydrase 2  +, Carbonic anhydrase 4  +, Calcium-activated potassium channel subunit alpha 1  +, and Glutamate receptor 2  +
SuperCategoryMolecular entity  +
SynonymCiclotiazida (INN-Spanish)  +, Ciclotiazide (DCIT)  +, Cyclothiazidum (INN-Latin)  +, Anhydron  +, Aquirel  +, Doburil  +, Fluidil  +, Renazide  +, and Valmiran  +